
1

Development of a Vision Controlled

3DOF Robotic Arm Pick and Place System

Casey Gosselin, Amber Lindberg, Aaron Longo

RBE 3001 UNIFIED ROBOTICS III: ACTUATION C21 Team 9

3/18/2021

Abstract — This project details the creation of a computer

vision controlled robotic arm system. An even driven state

machine was coded using MATLAB on a Linux

workstation. Test trials resulted in the robot being able to

detect and localize balls before sorting them by color. The

system was then able to perform dynamic object tracking

and unique object manipulation.

Terms – Computer Vision, Kinematics, MATLAB, Ubuntu

INTRODUCTION

 Built from the ground up, the object of this challenge was

to program a three degree of freedom arm (3DOF) to use

camera input to detect the location of brightly colored balls,

pick the balls up without interfering with other balls and

remove them from the field, placing them in their specified

target location (Figure 1).

FIGURE 1: THE FINAL ROBOT FIELD SET UP.

 This project implements mechanical skills through the

construction of the robot arms and theory of joint-space

control, electrical skills using the Hephaestus Brain control

board, and programming skills using MATLAB as an IDLE.

The Hephaestus Arm is a 3 DOF arm consisting of two links

attached to a rotating base. The third link has a servo-powered

gripper for manipulating objects on the field, which is used to

pick up the 3D printed balls. This gripper servo is connected

to the interface board using PWM. The arm uses serial

communication among three smart servos to actuate the links

which is powered by 7V connected to the line driver.

Controlling the arm is the Hephaestus Brain which contains

the line driver and the Itsy Bitsy M4. This board serves as the

interface board for physical arm control and calibration. The

firmware stored on this processor communicated with the

Linux Workstation using MATLAB scripts through USB to

receive signals. Along with this, a camera was connected to

the Linux PC using USB connection to send information that

could be used to the robot. A full diagram of the system

architecture can be found in Appendix G.

 There were two different types of space used within this

project. One type of space was joint space. Joint space sent

joint values to the robot, where the robot used forward

kinematics to move. The second type of space used was task

space which used inverse kinematics for the robot to move.

For inverse kinematics, the robot was told which coordinates

to move to, and solved for the joint angles that would get it to

those positions.

 To accomplish the mission of sorting the balls, the

camera used image processing to detect where each ball was

in task space in relation to the field, and then relayed that

information to the arm. From there, the arm used inverse

kinematics to determine how to reach the correct location of

the ball. The robot needed to solve for the theta values of the

2

joints that are needed to convert the robot’s tip position from

joint space to task space.

METHODOLOGY

 The first step for the project was to set up the webcam for

computer vision tracking. Utilizing the built in MATLAB

camera calibration app, many pictures of the checkerboard

had to be taken. These pictures would then be calibrated using

a standard or fisheye calibration function to determine the

intrinsic parameters for each camera. When calibrating the

robot, it was always calibrated in its “home” position, as

shown in Figure 2. This way the robot knew where it was

starting every single time it was powered up and would allow

the code to work on multiple arms despite small variations.

This ensured that the robot started in the correct spot and the

robot tip was in the same place in real life that the computer

thought it was.

FIGURE 2: ROBOT IN “HOME” CONFIGURATION

FIGURE 3: BINS USED TO DROP OFF THE BALLS

 To drop off the balls in the correct location and ensure

they rolled off the field and out of the view of the camera, the

team designed bins that were 3D printed (Figure 3). Due to

the reachable workspace of the robot, the bins were separated

into two, two bin containers. The bins had different sections

that corresponded for each color ball. The container contained

a curved ramp that ensured the ball would move outside of the

camera’s views so that the robot did not try and pick up the

ball again.

 One of the first things done when receiving the project

was creating an event driven state machine which helped

simplify the code writing process. An event driven state

machine helps prevent errors as the one event triggers

another. This prevented the robot from skipping to the next

step before it completed the previous one.

 The next task completed was camera calibration. Within

the Computer Vision Toolbox, there is an app called camera

calibration that the team used to calibrate their cameras. The

camera was moved around the board held so that all of the

field squares could be seen, taking pictures every five

seconds. About 35 pictures were taken per team member.

Once all the pictures were taken, the team entered the size of

each square in millimeters into the program. An error graph

would pop up and the highest error reading pictures were

deleted until there were only twenty pictures left. After

completing this process, the camera was marked as a fisheye,

and exported to function.

 Once the camera was fully calibrated, the next task that

the team tackled was creating an image processing pipeline.

The way that the image processing pipeline works is by taking

a snapshot using the camera, the image is undistorted, and a

mask is put over it so only the checkerboard workspace is

observed. Then an HSV filer is applied to the masked image

and centroid values are derived from the image after a bit of

filtering to get rid of any unwanted noise.

 Using the information sent from the camera, several new

functions where created. The first new function created was

ik_3001_final num(). This function was very similar to a

previous function that was created which used inverse

velocity kinematics to control the movement of the arm.

Inverse velocity kinematics uses inverse kinematics and the

current position of the arm, along with a speed coefficient to

determine what path to follow and how fast the robot will

travel. Inverse kinematics calculations can be found in

Appendix B. Other functions that were created in order to

simplify the robot’s code and make it easier to read were

moveAboveBall(), moveToPickup(), moveGripper(),

raiseArm(), and moveToDropPos().

3

 Once these functions were created, a StateMachine class

was created in MATLAB. This is where the robot changed

from state to state. Several states utilized the use of flags, to

keep track of the robot’s path. In the main code file, a

StateMachine was instantiated, which allowed the robot to

move through its desired path and sort the balls by their

perceived color.

 Once the robot was able to sort the balls by color,

continuous scanning was implemented into the design. The

continuous scanning allowed for the ball to move on the robot,

and the robot to sense that the ball was no longer in the

position it thought it was and adjust accordingly. When the

robot was able to use continuous scanning reliably, the team

then tackled the challenge of picking up and object that was a

different shape than the balls. The team used image

processing to locate a mozzarella stick on the field and dunk

it into marinara sauce. Once the stick was dunked, it was

removed from the sauce and the arm was outstretched so that

it was off the field.

RESULTS

 During initial testing, it was found that the standard

camera mount was too small. This caused the front edge of it

to obstruct the camera view. Due to the camera’s field of

view, the camera needed to be raised

about 2 cm higher than the stock camera

stand reach. To fix these issues, a new

camera stand was designed using CAD,

as shown in Figure 4. The stand is taller

and thinner at the top to capture the

whole field while not obstructing the

camera view.

 The final event-driven state

machine has 5 classes, those being

Robot, StateMachine, Camera, State,

and Event Timer. It transitions between

4 defined states: IDLE, SCAN, MOVE,

and GRASP.

 When calibrating the cameras, a fisheye correction was

used. This provided the most accurate results when using the

points2world function. Along with the calibration tool, the

lenses of each camera had to be adjusted until most of the

checkerboard was in focus. The team found that an average of

20 images provided the most accurate results, with an average

pixel error of about .5 pixels.

 The vision processing occurs within the Camera class.

Initially, HSV masks are run for each ball color. HSV masks

were chosen because it was more reliable in different lighting

conditions. Then, a noise reduction filter is run to remove any

noise or stray pixels, as shown in Figure 5. Finally, region

props are run on each ball to detect the centroid of a ball in

pixel coordinates. These pixel coordinates are transformed

into world coordinates using built in MATLAB functions.

FIGURE 5: THE OUTPUT FROM THE MEDIAN FILTER
FOR EACH OF THE BALLS

 When picking up balls, geometric adjustments had to be

made to account for picking up each ball. Essentially, the

camera sees the centroid of each ball, but projects the location

of it behind the ball, because the height of the centroid is equal

to the radius of each ball. To calculate the true position of each

ball, a function was created that accepted positional

coordinates in relation to the base of the robot. From these,

the coordinates were transformed to be in relation to the

camera, where:

𝑥𝑐𝑎𝑚𝑒𝑟𝑎 = (𝑦𝑟𝑜𝑏𝑜𝑡 + 100) − 99

ycamera = 151 − (𝑥𝑟𝑜𝑏𝑜𝑡 − 50)

 After determining the location of the ball relative to the

camera, the angle from the projection to the camera lens was

calculated.

p = √𝑥𝑐𝑎𝑚2 + 𝑦𝑐𝑎𝑚2

𝜃𝑐𝑎𝑚 = tan−1
ℎ𝑐𝑎𝑚𝑒𝑟𝑎

𝑝

 Once this angle was determined, the concept of similar

triangles was used to determine where the height of the

position vector is equal to the radius of a ball. Once this

horizontal distance a along p was calculated, the coordinates

FIGURE 4 : NEW
CAMERA
STAND

DESIGNED AND
PRINTED

4

could be transformed back into coordinates relative to the

robot. To calculate the new x and y coordinates of the robot,

a base angle β had to be calculated.

𝑎 =
𝑟𝑏𝑎𝑙𝑙

tan⁡(𝜃𝑐𝑎𝑚)

𝛽 = tan−1
𝑥𝑐𝑎𝑚
𝑦𝑐𝑎𝑚

𝑥𝑏𝑜𝑡𝑁𝑒𝑤 = (151 − (𝑝 − 𝑞) cos(𝛽)) + 50

𝑦𝑏𝑜𝑡𝑛𝑒𝑤 = ((𝑝 − 𝑎) sin(𝛽) + 99) − 100

 However, the gripper on the robot does not open

symmetrically, meaning the robot must be shifted to one

direction to allow for maximum clearance between the fixed

side of it. The following equations were used to convert the

balls task space position into polar coordinates, so the angle

of joint 1 on the robot could be adjusted.

r = √𝑥𝑏𝑜𝑡𝑛𝑒𝑤
2 + 𝑦𝑏𝑜𝑡𝑛𝑒𝑤

2

θpolar = tan−1
𝑦𝑏𝑜𝑡𝑛𝑒𝑤
𝑥𝑏𝑜𝑡𝑛𝑒𝑤

 Once these were determined, theta was adjusted by 5

degrees to offset the gripper.

xfinal = 𝑟 ∗ cos⁡(𝜃𝑝𝑜𝑙𝑎𝑟 + 5)

yfinal = 𝑟 ∗ sin⁡(𝜃𝑝𝑜𝑙𝑎𝑟 + 5)

 As a result, the true and optimal pickup position of each

ball could be sent to the robot. Without these calculations, the

tip of the robot would move to a task space position up to a

centimeter off, where the error was the worst as the edged of

the checkerboard. For a diagram of the calculations, see

Appendix E. For ball deposition, custom boxes were made for

the balls, as seen in Figure 3. To assist in removing them the

field or camera’s view, they had ramps on the backside to roll

the balls away.

 To pick up and manipulate objects, functions had to be

written for the gripper servo. This function was written using

the existing write function for the servo. Since the gripper

servo communicates via PWM comparted to UART like the

large servos, float datatype communication was substituted

for bytes.

 After combining everything together, the robot was

successfully able to manipulate balls of every color with

reliable accuracy and consistency. For robot motion, the

inverse velocity kinematics algorithm was utilized. The

previously created function was modified to take in a final

position in task space compared to using ginput to determine

the final position. The ball boxes were attached to the field

using hot glue and were assigned (left to right from the robot’s

perspective) pink, orange, green, and yellow.

FIGURE 6: THE ROBOT MANIPULATING A BALL.

 Due to the way the state machine works, the robot was

also able to perform dynamic object tracking for the balls.

Since every iteration of the state machine takes a new picture

for ball detection, the robot could locate a ball if it had been

moved. The constant scanning was implemented by switching

to the SCAN state and scanning for the robot as it moved

through its path. If the robot realized that the ball had moved,

it would stop and change its direction towards the new

location of the ball. Since dynamic tracking did not involve

picking up the ball, portions of the state machine involving

object manipulation were removed.

 For extra credit, the team modified the existing state

machine to allow for the manipulation of unique objects. The

unique object was chosen to be a mozzarella stick, which the

arm would move to a container of sauce in the corner of the

field. The centroid calculations for the mozzarella stick had to

change due to the difference in size compared to the balls. As

seen in Figure X, the robot had to pick up each stick from the

edge so it could rotate to a vertical position. A new mask

specifically for a mozzarella stick was also made.

5

FIGURE 7: THE ROBOT GRASPING THE
MOZZARELLA STICK

FIGURE 8: THE ROBOT DUNKING THE
MOZZARELLA STICK IN MARINARA

DISCUSSION

 For this project, the event-driven state machine worked

well. The IDLE state referred to the period when the robot

was starting up or shutting down. The SCAN state was when

the robot was searching the field for objected to pick up. The

MOVE state dealt with all movement of the three main smart

servos, whether it was moving to a ball or to a drop off

position. Finally, the GRASP state was the state where the

robot would move the gripper, either to open it or close it.

 Starting in the IDLE state, the robot would wait for an

internal timer to expire. The timer gave the robot enough time

to calibrate the camera and start up the robot. Once the timer

expired, the state would change to SCAN. Within the SCAN

state, the robot would undergo the image processing pipeline

to find the balls. Once a ball was detected, it would travel to

the MOVE state where it would begin a series of movements

to get in position of the ball.

 At the beginning of the MOVE state, if the robot were not

above the ball and robot did not have possession of a ball, it

would move to above the first ball. Once the robot was in

place above the ball, it would slowly move down, surrounding

the ball with each side of the gripper. Once the ball was

between the gripper, the robot switched to the GRASP state,

where the servo closed around the ball. Once the ball was in

the robot’s possession, the robot would switch back to the

MOVE state. It would then raise the arm directly up. This

movement made it so that the arm did not knock off other balls

when moving towards the drop off location. The drop off

location was determined by the color of the ball that the robot

was in possession of. Once the ball had been raised a set

amount, it would travel to its specified drop off position. Once

it had reached its drop off position, it would switch back to

the GRASP state and open its gripper. The ball would fall into

the 3D printed ramp. From there, it would move back into the

SCAN state, searching for another ball. If it ran out of balls,

the robot shutdown, and switched back into the IDLE state.

 When creating the state machine, the team realized that

four states was enough states to accomplish the desired

sorting method. The team utilized creating functions and flags

to ensure that the robot was travelling through each section of

the state machine correctly. To do this in MATLAB, a state

machine class was created. The state machine has a robot

object and a camera object. The camera object had functions

which output the actual location of the ball. This information

was fed to different functions within the robot object that were

created to travel to the desired location based off the balls

position.

 Timing wise, the state machine depended on a series of

pauses to run properly. This was determined to be due to the

speed at which MATLAB runs scripts vs. how quickly the

robot could respond to commands.

 When calibrating the camera, the position of the

checkerboard was extremely important. Since the MATLAB

app recognized the black squares, the black ball could not be

used. When searching for black squares, MATLAB creates a

matrix of color values corresponding to the checkerboard.

Since it could be assumed that the checkerboards are

perpendicular, the matrix can be manipulated until the color

values represent a straight line. The changes to the initial

matrix represented the intrinsic parameters for each camera.

Since these cameras have a wide field of view, the fisheye

calibration option proved to yield the best conversion results,

with an error or approximately ± 1mm.

 The image processing pipeline proved to be very

sensitive to the lighting conditions that the robot was in. This

was because the HSV masks block out colors, allowing

specific ones in. If the brightness or color of the light changed,

the masks wouldn’t work as intended. After initial tests, a

field mask also had to be drawn. This blocked any exterior

objects from being detected by the camera. Since only one

object of each color could be on the field at a time, blob

detection didn’t have to be run to assign each object an ID.

 When detecting balls, it was thought that the camera

could also assign the balls to a color name, such as ‘red’. Due

to the way MATLAB matrices work, each color had to be

6

assigned to a number instead, where 1 = green, 2 = orange, 3

= pink, and 4 = yellow.

 The ik_3001_final_num() function, used the information

about the target ball’s location in order to determine its

movement. This function was the base function that was used

inside of all the other new robot’s movement functions.

 To create trajectories for the robot motion, it was decided

that the inverse velocity kinematics algorithm would be used.

The team determined that this movement created the

smoothest path of motion when compared to the cubic

trajectory or quintic polynomial trajectory method. This

movement also allowed the team to control the speed at which

the robot moved using a speed coefficient, which was very

helpful when slowly approaching the location of the balls.

 When using the inverse velocity kinematics algorithm,

small errors in joint motion were noticed in joint 3 of the

robots. If the robot were moving a ball towards a drop box,

joint 3 would sometimes make arcing motion before reaching

the setpoint. This could be due to friction within the motor,

the motor PID values, or imperfections in the robot’s

construction. Normally, this trajectory didn’t cause any issues

unless the tip came close to hitting the camera or a ball. This

was solved by adjusting the task space setpoint.

 The moveAboveBall() function used the

ik_3001_final_num() function within it to move the ball

slightly above the location of the ball. The next function,

moveToPickup(), moves the arm from above the ball, slowly

down to the position of the ball. The next function created was

moveGripper(), which moved the gripper servo based on the

value entered into the function. The value of the servo ranged

from 0-180 degrees. A low number would close the gripper,

and a high value would open the gripper. This function was

created very similarly to how the smart servos were coded,

only instead of using writeFloats() in order to communicate

to the device, it used writeBytes(). The next function,

raiseArm(), raised the arm of the robot in only the Z-direction.

This approach was taken so that when the robot was bringing

the ball to the drop position, it would not collide with any

other balls on the field. Although this was made to prevent

collision, the way that the state machine works, the camera re-

scans the field every time that the arm deposits a ball. If a ball

were to get accidently knocked, it would not be affected as its

old location gets overwritten with every scan. The final new

function that was created in the robot class was

moveToDropPos(). This function moved the ball to its

designated drop position based on the color of the ball. During

the image processing pipeline, the balls are written to an array

which includes an ID, based on the color of the ball. Each ball

color was assigned a drop position which allowed for the ball

to be moved to the correct location based off the color of the

ball.

 Due to the structure of the state machine, dynamic object

tracking was easily achievable. However, the speed of it was

slow compared to normal robot motion. Due to the time

MATLAB took to process each image taken by the camera,

the robot would only move with several second intervals. The

team also realized when testing the movement that the color

of their hand would often accidently get tracked by the camera

as a ball. To counteract this, the team pushed the ball around

with a screwdriver.

 When trying to determine what differently shaped object

the robot should pick up, the team had to make sure that the

object could fit between the claw of the gripper. The item also

needed to be a solid color so that the camera could detect the

object. Using the resources available to them, the team

decided that the robot would attempt to pick up a mozzarella

stick, carry it to its dunking location, where it was dipped in

marinara sauce, and lifted off the field. During tests, the

gripper had trouble grasping the mozzarella stick due to its

weight. This could be improved in future tests by increasing

the elastic or spring force that holds the gripper closed.

CONCLUSION

 This project began with the construction of the robot arm.

Each part was 3D printed and assembled. The control board /

brain of the robot was also soldered. Lastly, the MATLAB /

Linux workstation was set up on each computer.

 The success of this project relied on the development of

a computer vision algorithm capable of detecting colored

balls. Within the algorithm, HSV masks, region props, and

median filtering were used to locate balls on the field. Based

on their color, the robotic arm would move over to the ball,

pick it up, and deposit it in a unique location coordinating to

its color. The computer vision ended up being a success due

to the recalibration of HSV filters and extrinsic camera

parameters each time the robot was used.

 When programming the robot, an event driven state

machine was used. The robot can be classified into four states:

7

IDLE, SCAN, MOVE, and GRASP. Using these states, the

robot successfully progressed through the tasks of object

detection and localization, dynamic object tracking, and

unique object manipulation.

 This project introduced the concepts of forward and

inverse positional and velocity kinematics using DH

Parameters and the manipulator jacobian. Using these results,

functions were able to be written in MATLAB. This project

also introduced software tools such as MATLAB, Linux, and

git command line. These concepts introduced in this class

encompass the three core divisions of robotics. The

calculations for the forward and inverse positional and

velocity kinematics encompass the concept of mechanical

engineering. The circuit development encompasses electrical

engineering, while the MATLAB software development

utilizes the key concepts of computer science. The concepts

used by this project strengthened skills relating to vision

control, actuation, and manipulation that will be utilized in

future projects and tasks.

APPENDIX A: AUTHORSHIP

Report

Section Author

Abstract CJG

Intro ALL1

Methodology

 Calibration ALL1

 New 3D Prints CJG

 Camera Calibration ALL1

 Image Processing ALL2

 State Machine ALL1

Results ALL

Discussion

 State Machine ALL1

 Ball Calculations CJG

 Image Processing ALL2

 New Robot Functions / Trajectory ALL1

Conclusion ALL2 + CJG

Video ALL1 + CJG

Code

Camera Calibration ALL

Ball Position Kinematics CJG

Image Processing ALL2

Gripper Functions CJG

Robot Ball Manipulation Functions ALL1

State Machine ALL1 + CJG

Final Arm Tweaking and Tuning ALL + CJG

Part Design / 3D Printing CJG + ALL1

Dynamic Object Tracking CJG

Unique Object Detection CJG + ALL1

Key

ALL = Everyone

ALL1 = Amber Lee Lindberg

ALL2 = Aaron Lee Longo

CJG = Casey Gosselin

APPENDIX B: KINEMATICS CALCULATIONS

Forward Kinematics Calculations

FIGURE 9: FIGURE SHOWING THE DH PARAMETERS

AND FRAMES FOR THE ARM IN ZERO POSITION.

8

p0 − 𝑇0
𝐶ℎ𝑒𝑐𝑘𝑒𝑟 ∗ 𝑝𝑐ℎ𝑒𝑐𝑘𝑒𝑟

𝑇0
𝑇𝑖𝑝 =

0 1 0 50
1 0 0 −100
0 0 −1 0
0 0 0 1

Inverse Kinematics Calculations

FIGURE 10: FIGURE SHOWING THE INVERSE
KINEMATICS CALCULATIONS FOR THE ROBOT

𝑝𝑥 = 𝑥⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛⁡𝑜𝑓⁡𝑒𝑛𝑑⁡𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟

𝑝𝑦 = 𝑦⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛⁡𝑜𝑓⁡𝑒𝑛𝑑⁡𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟

𝑝𝑧 = 𝑧⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛⁡𝑜𝑓⁡𝑒𝑛𝑑⁡𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟

𝑞1 = ⁡𝜃1 = tan−1
𝑝𝑦
𝑝𝑥

𝑞2 = 𝜃2 = 90 − 𝜙1 − 𝜙2

𝑞3 = 𝜃3 = 90 − 𝜙3

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛⁡𝑜𝑓⁡𝑎𝑟𝑚⁡𝑜𝑛𝑡𝑜⁡𝑥𝑦⁡𝑝𝑙𝑎𝑛𝑒 = ⁡𝑟 = √𝑝𝑥2 + 𝑝𝑦2

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁡𝑓𝑟𝑜𝑚⁡𝑗𝑜𝑖𝑛𝑡⁡2⁡𝑡𝑜⁡𝑡ℎ𝑒⁡𝑡𝑖𝑝 = ⁡𝑟3

= √𝑟2 + (𝑝𝑧 − (𝐿0 + 𝐿1))
2

𝜙1 = 𝑐𝑜𝑠−1
(𝐿3

2 − 𝐿2
2 − 𝑟3

2)

−2𝐿2𝑟3
⁡

𝜙2 = tan−1
𝑝𝑧 − (𝐿0 + 𝐿1)

𝑟

𝜙3 = cos−1
𝑟3
2 − 𝐿2

2 − 𝐿3
2

−2𝐿2𝐿3

APPENDIX C: GITHUB RELEASE LINK

Final Release: https://github.com/RBE300X-

Lab/RBE3001Code09/tree/Final_Project

Extra Credit 1: https://github.com/RBE300X-

Lab/RBE3001Code09/tree/Final_Project_EC1

Extra Credit 2: https://github.com/RBE300X-

Lab/RBE3001Code09/tree/Final_Project_EC2

APPENDIX D: ARM DEMONSTRATION VIDEO

https://youtu.be/ZmY3_EOfiiY

DH Parameters

Joint θ d a α

1 q1 L0 + L1 0 -90

2 q2 - 90 0 L2 0

3 q3 + 90 0 L3 0

TABLE 1: THE DH PARAMETERS FOR THE ROBOT

https://github.com/RBE300X-Lab/RBE3001Code09/tree/Final_Project
https://github.com/RBE300X-Lab/RBE3001Code09/tree/Final_Project
https://github.com/RBE300X-Lab/RBE3001Code09/tree/Final_Project_EC1
https://github.com/RBE300X-Lab/RBE3001Code09/tree/Final_Project_EC1
https://github.com/RBE300X-Lab/RBE3001Code09/tree/Final_Project_EC2
https://github.com/RBE300X-Lab/RBE3001Code09/tree/Final_Project_EC2
https://youtu.be/ZmY3_EOfiiY

9

APPENDIX E: BALL CENTROID DIAGRAMS

FIGURE 11: THE DIAGRAM USED FOR CALCULATING THE CENTER OF THE BALL.

APPENDIX F: STATE MACHINE DIAGRAM

FIGURE 12: THE EVENT-DRIVEN STATE MACHINE USED BY THE ROBOT.

10

APPENDIX G: SYSTEM ARCHITECTURE DIAGRAM

FIGURE 13: THE OVERALL SYSTEM ARCHITECTURE

	Abstract — This project details the creation of a computer vision controlled robotic arm system. An even driven state machine was coded using MATLAB on a Linux workstation. Test trials resulted in the robot being able to detect and localize balls befo...
	Introduction
	Methodology
	Results
	Discussion
	Conclusion
	Appendix A: Authorship
	Appendix B: Kinematics Calculations
	Appendix C: GitHub Release Link
	Appendix D: Arm Demonstration Video
	Appendix E: Ball Centroid Diagrams
	Appendix F: State Machine Diagram
	Appendix G: System Architecture Diagram

